Celestial Integration, Stringy Invariants, and Chern-schwartz-macpherson Classes

نویسنده

  • PAOLO ALUFFI
چکیده

We introduce a formal integral on the system of varieties mapping properly and birationally to a given one, with value in an associated Chow group. Applications include comparisons of Chern numbers of birational varieties, new birational invariants, ‘stringy’ Chern classes, and a ‘celestial’ zeta function specializing to the topological zeta function. In its simplest manifestation, the integral gives a new expression for ChernSchwartz-MacPherson classes of possibly singular varieties, placing them into a context in which a ‘change of variable’ formula holds. The formalism has points of contact with motivic integration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification Systems and Integration in Their Chow Groups

We introduce a notion of integration on the category of proper birational maps to a given variety X, with value in an associated Chow group. Applications include new birational invariants; comparison results for Chern classes and numbers of nonsingular birational varieties; ‘stringy’ Chern classes of singular varieties; and a zeta function specializing to the topological zeta function. In its s...

متن کامل

Interpolation of Characteristic Classes of Singular Hypersurfaces

We show that the Chern-Schwartz-MacPherson class of a hypersurface X in a nonsingular varietyM `interpolates' between two other notions of characteristic classes for singular varieties, provided that the singular locus of X is smooth and that certain numerical invariants of X are constant along this locus. This allows us to de ne a lift of the Chern-Schwartz-MacPherson class of such `nice' hype...

متن کامل

A direct algorithm to compute the topological Euler characteristic and Chern-Schwartz-MacPherson class of projective complete intersection varieties

Let V be a possibly singular scheme-theoretic complete intersection subscheme of P over an algebraically closed field of characteristic zero. Using a recent result of Fullwood (“On Milnor classes via invariants of singular subschemes”, Journal of Singularities) we develop an algorithm to compute the Chern-Schwartz-MacPherson class and Euler characteristic of V . This algorithm complements exist...

متن کامل

Differential Forms with Logarithmic Poles and Chern-schwartz-macpherson Classes of Singular Varieties

We express the Chern-Schwartz-MacPherson class of a possibly singular variety in terms of the total Chern class of a bundle of di erential forms with logarithmic poles. As an application, we obtain a formula for the Chern-Schwartz-MacPherson class of a hypersurface of a nonsingular variety, in terms of the Chern-Mather class of a suitable sheaf. x

متن کامل

Algorithms to compute the topological Euler characteristic, Chern-Schwartz-MacPherson class and Segre class of projective varieties

Let V be a closed subscheme of a projective space P. We give an algorithm to compute the Chern-Schwartz-MacPherson class, and the Euler characteristic of V and an algorithm to compute the Segre class of V . The algorithms can be implemented using either symbolic or numerical methods. The algorithms are based on a new method for calculating the projective degrees of a rational map defined by a h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006