Celestial Integration, Stringy Invariants, and Chern-schwartz-macpherson Classes
نویسنده
چکیده
We introduce a formal integral on the system of varieties mapping properly and birationally to a given one, with value in an associated Chow group. Applications include comparisons of Chern numbers of birational varieties, new birational invariants, ‘stringy’ Chern classes, and a ‘celestial’ zeta function specializing to the topological zeta function. In its simplest manifestation, the integral gives a new expression for ChernSchwartz-MacPherson classes of possibly singular varieties, placing them into a context in which a ‘change of variable’ formula holds. The formalism has points of contact with motivic integration.
منابع مشابه
Modification Systems and Integration in Their Chow Groups
We introduce a notion of integration on the category of proper birational maps to a given variety X, with value in an associated Chow group. Applications include new birational invariants; comparison results for Chern classes and numbers of nonsingular birational varieties; ‘stringy’ Chern classes of singular varieties; and a zeta function specializing to the topological zeta function. In its s...
متن کاملInterpolation of Characteristic Classes of Singular Hypersurfaces
We show that the Chern-Schwartz-MacPherson class of a hypersurface X in a nonsingular varietyM `interpolates' between two other notions of characteristic classes for singular varieties, provided that the singular locus of X is smooth and that certain numerical invariants of X are constant along this locus. This allows us to de ne a lift of the Chern-Schwartz-MacPherson class of such `nice' hype...
متن کاملA direct algorithm to compute the topological Euler characteristic and Chern-Schwartz-MacPherson class of projective complete intersection varieties
Let V be a possibly singular scheme-theoretic complete intersection subscheme of P over an algebraically closed field of characteristic zero. Using a recent result of Fullwood (“On Milnor classes via invariants of singular subschemes”, Journal of Singularities) we develop an algorithm to compute the Chern-Schwartz-MacPherson class and Euler characteristic of V . This algorithm complements exist...
متن کاملDifferential Forms with Logarithmic Poles and Chern-schwartz-macpherson Classes of Singular Varieties
We express the Chern-Schwartz-MacPherson class of a possibly singular variety in terms of the total Chern class of a bundle of di erential forms with logarithmic poles. As an application, we obtain a formula for the Chern-Schwartz-MacPherson class of a hypersurface of a nonsingular variety, in terms of the Chern-Mather class of a suitable sheaf. x
متن کاملAlgorithms to compute the topological Euler characteristic, Chern-Schwartz-MacPherson class and Segre class of projective varieties
Let V be a closed subscheme of a projective space P. We give an algorithm to compute the Chern-Schwartz-MacPherson class, and the Euler characteristic of V and an algorithm to compute the Segre class of V . The algorithms can be implemented using either symbolic or numerical methods. The algorithms are based on a new method for calculating the projective degrees of a rational map defined by a h...
متن کامل